CSP-S1提高级初赛试卷[2020]

第1题

请选出以下最大的数( )

共 2 分 

第2题

操作系统的功能是( )

共 2 分 

第3题

现有一段 8 分钟的视频文件,它的播放速度是每秒 24 帧图像,每帧图像是一幅分辨率为 2048×1024 像素的 32 位真彩色图像。请问要存储这段原始无压缩视频,需要多大的存储空间?( )

共 2 分 

第4题

今有一空栈 S,对下列待进栈的数据元素序列 a,b,c,d,e,f依次进行:进栈,进栈,出栈,进栈,进栈,出栈的操作,则此操作完成后,栈底元素为( )。

共 2 分 

第5题

将 (2,7,10,18)分别存储到某个地址区间为 0~10 的哈希表中,如果哈希函数 h(x)=( ),将不会产生冲突,其中 a mod b 表示 a 除以 b 的余数。

共 2 分 

第6题

下列哪些问题不能用贪心法精确求解?( )

共 2 分 

第7题

具有 n 个定点,e 条边的图采用邻接表存储结构,进行深度优先遍历运算的时间复杂度为( )。

共 2 分 

第8题

二分图是指能将顶点划分成两个部分,每一部分内的顶点间没有边相连的简单无向图。那么,24 个顶点的二分图至多有( )条边。

共 2 分 

第9题

广度优先搜索时,一定需要用到的数据结构是( )。

共 2 分 

第10题

一个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组七人就多四人,问这个班的学生人数 n 在以下哪个区间?已知 n<60。( )

共 2 分 

第11题

小明想通过走楼梯来锻炼身体,假设从第 1 层走到第 2 层消耗 10 卡热量,接着从第 2 层走到第 3 层消耗 20 卡热量,再从第 3 层走到第 4 层消耗 30 卡热量,依此类推,从第 k 层走到第 k+1 层消耗 10k 卡热量(k>1)。如果小明想从 1 层开始,通过连续向上爬楼梯消耗 1000 卡热量,至少要爬到第几层楼?( )

共 2 分 

第12题

表达式 a*(b+c)-da∗(b+c)−d 的后缀表达形式为( )。

共 2 分 

第13题

从一个 4×4 的棋盘中选取不在同一行也不在同一列上的两个方格,共有( )种方法。

共 2 分 

第14题

对一个 n 个顶点、m 条边的带权有向简单图用 Dijkstra 算法计算单源最短路时,如果不使用队或其他优先队列进行优化,则其时间复杂度为( )。

共 2 分 

第15题

1948 年,( )将热力学中的熵引入信息通信领域,标志着信息论研究的开端。

共 2 分 

第16题

#include <iostream>
using namespace std;

int n;
int d[1000];

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        cin >> d[i];
    }
    int ans = -1;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            if (d[i] < d[j])
                ans = max(ans, d[i] + d[j] - (d[i] & d[j]));
    cout << ans;
    return 0;
}

假设输入的 n 和 d[i] 都是不超过 10000 的正整数。

1)判断:n 必须小于 1000,否则程序可能会发生错误。( )

共 1.5 分 

第17题

#include <iostream>
using namespace std;

int n;
int d[1000];

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        cin >> d[i];
    }
    int ans = -1;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            if (d[i] < d[j])
                ans = max(ans, d[i] + d[j] - (d[i] & d[j]));
    cout << ans;
    return 0;
}

假设输入的 n 和 d[i] 都是不超过 10000 的正整数。

2)判断:输出一定大于等于 0。( )

共 1.5 分 

第18题

#include <iostream>
using namespace std;

int n;
int d[1000];

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        cin >> d[i];
    }
    int ans = -1;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            if (d[i] < d[j])
                ans = max(ans, d[i] + d[j] - (d[i] & d[j]));
    cout << ans;
    return 0;
}

假设输入的 n 和 d[i] 都是不超过 10000 的正整数。

3)判断:若将第 13 行的“j = 0”改为“j = i + 1”,程序输出可能会改变。( )

共 1.5 分 

第19题

#include <iostream>
using namespace std;


int n;
int d[1000];

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        cin >> d[i];
    }
    int ans = -1;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            if (d[i] < d[j])
                ans = max(ans, d[i] + d[j] - (d[i] & d[j]));
    cout << ans;
    return 0;
}

假设输入的 n 和 d[i] 都是不超过 10000 的正整数。

4)判断:将第 14 行的“d[i] < d[j]”改为“d[i] != d[j]”,程序输出不会改变。( )

共 1.5 分 

第20题

#include <iostream>
using namespace std;

int n;
int d[1000];

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        cin >> d[i];
    }
    int ans = -1;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            if (d[i] < d[j])
                ans = max(ans, d[i] + d[j] - (d[i] & d[j]));
    cout << ans;
    return 0;
}

假设输入的 n 和 d[i] 都是不超过 10000 的正整数。

5)若输入的 n 为 100,且输出为 127,则输入的 d[i] 中不可能有( )

共 3 分 

第21题

#include <iostream>
using namespace std;

int n;
int d[1000];

int main() {
    cin >> n;
    for (int i = 0; i < n; i++) {
        cin >> d[i];
    }
    int ans = -1;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            if (d[i] < d[j])
                ans = max(ans, d[i] + d[j] - (d[i] & d[j]));
    cout << ans;
    return 0;
}

假设输入的 n 和 d[i] 都是不超过 10000 的正整数。

6)若输出的数大于 0,则下面说法正确的是( )

共 3 分 

第22题

#include <iostream>
#include <cstdlib>
using namespace std;

int n;
int d[10000];

int find(int L, int R, int k) {
    int x = rand() % (R - L + 1) + L;
    swap(d[L], d[x]);
    int a = L + 1, b = R;
    while (a < b) {
        while (a < b && d[a] < d[L])
            ++a;
        while (a < b && d[b] >= d[L])
            --b;
        swap(d[a], d[b]);
    }
    if (d[a] < d[L])
        ++a;
    if (a - L == k)
        return d[L];
    if (a - L < k)
        return find(a, R, k - (a - L));
    return find(L + 1, a - 1, k);
}

int main() {
    int k;
    cin >> n;
    cin >> k;
    for (int i = 0; i < n; ++i)
        cin >> d[i];
    cout << find(0, n - 1, k);
    return 0;
}

假设输入的 n,k 和 d[i] 都是不超过 10000 的正整数,且 k 不超过 n,并假设 rand() 函数产生的是均匀的随机数。

1)判断:第 9 行的“x”的数值范围是 L+1到 R,即 [L+1, R]。( )

共 1.5 分 

第23题

#include <iostream>
#include <cstdlib>
using namespace std;

int n;
int d[10000];

int find(int L, int R, int k) {
    int x = rand() % (R - L + 1) + L;
    swap(d[L], d[x]);
    int a = L + 1, b = R;
    while (a < b) {
        while (a < b && d[a] < d[L])
            ++a;
        while (a < b && d[b] >= d[L])
            --b;
        swap(d[a], d[b]);
    }
    if (d[a] < d[L])
        ++a;
    if (a - L == k)
        return d[L];
    if (a - L < k)
        return find(a, R, k - (a - L));
    return find(L + 1, a - 1, k);
}

int main() {
    int k;
    cin >> n;
    cin >> k;
    for (int i = 0; i < n; ++i)
        cin >> d[i];
    cout << find(0, n - 1, k);
    return 0;
}

假设输入的 n,k 和 d[i] 都是不超过 10000 的正整数,且 k 不超过 n,并假设 rand() 函数产生的是均匀的随机数。

2)判断:将第 19 行的“d[a]”改为“d[b]”,程序不会发生运行错误。( )

共 1.5 分 

第24题

#include <iostream>
#include <cstdlib>
using namespace std;

int n;
int d[10000];

int find(int L, int R, int k) {
    int x = rand() % (R - L + 1) + L;
    swap(d[L], d[x]);
    int a = L + 1, b = R;
    while (a < b) {
        while (a < b && d[a] < d[L])
            ++a;
        while (a < b && d[b] >= d[L])
            --b;
        swap(d[a], d[b]);
    }
    if (d[a] < d[L])
        ++a;
    if (a - L == k)
        return d[L];
    if (a - L < k)
        return find(a, R, k - (a - L));
    return find(L + 1, a - 1, k);
}

int main() {
    int k;
    cin >> n;
    cin >> k;
    for (int i = 0; i < n; ++i)
        cin >> d[i];
    cout << find(0, n - 1, k);
    return 0;
}

假设输入的 n,k 和 d[i] 都是不超过 10000 的正整数,且 k 不超过 n,并假设 rand() 函数产生的是均匀的随机数。

3)当输入的 d[i] 是严格单调递增序列时,第 17 行的“swap”的平均执行次数是( )

共 2.5 分 

第25题

#include <iostream>
#include <cstdlib>
using namespace std;

int n;
int d[10000];

int find(int L, int R, int k) {
    int x = rand() % (R - L + 1) + L;
    swap(d[L], d[x]);
    int a = L + 1, b = R;
    while (a < b) {
        while (a < b && d[a] < d[L])
            ++a;
        while (a < b && d[b] >= d[L])
            --b;
        swap(d[a], d[b]);
    }
    if (d[a] < d[L])
        ++a;
    if (a - L == k)
        return d[L];
    if (a - L < k)
        return find(a, R, k - (a - L));
    return find(L + 1, a - 1, k);
}

int main() {
    int k;
    cin >> n;
    cin >> k;
    for (int i = 0; i < n; ++i)
        cin >> d[i];
    cout << find(0, n - 1, k);
    return 0;
}

假设输入的 n,k 和 d[i] 都是不超过 10000 的正整数,且 k 不超过 n,并假设 rand() 函数产生的是均匀的随机数。

4)当输入的 d[i] 是严格单调递减序列时,第 17 行的“swap”平均执行次数是( )

共 2.5 分 

第26题

#include <iostream>
#include <cstdlib>
using namespace std;

int n;
int d[10000];

int find(int L, int R, int k) {
    int x = rand() % (R - L + 1) + L;
    swap(d[L], d[x]);
    int a = L + 1, b = R;
    while (a < b) {
        while (a < b && d[a] < d[L])
            ++a;
        while (a < b && d[b] >= d[L])
            --b;
        swap(d[a], d[b]);
    }
    if (d[a] < d[L])
        ++a;
    if (a - L == k)
        return d[L];
    if (a - L < k)
        return find(a, R, k - (a - L));
    return find(L + 1, a - 1, k);
}

int main() {
    int k;
    cin >> n;
    cin >> k;
    for (int i = 0; i < n; ++i)
        cin >> d[i];
    cout << find(0, n - 1, k);
    return 0;
}

假设输入的 n,k 和 d[i] 都是不超过 10000 的正整数,且 k 不超过 n,并假设 rand() 函数产生的是均匀的随机数。

5)若输入的 d[i] 为 i,此程序①平均的时间复杂度和②最坏情况下的时间复杂度分别是( )

共 2.5 分 

第27题

#include <iostream>
#include <cstdlib>
using namespace std;

int n;
int d[10000];

int find(int L, int R, int k) {
    int x = rand() % (R - L + 1) + L;
    swap(d[L], d[x]);
    int a = L + 1, b = R;
    while (a < b) {
        while (a < b && d[a] < d[L])
            ++a;
        while (a < b && d[b] >= d[L])
            --b;
        swap(d[a], d[b]);
    }
    if (d[a] < d[L])
        ++a;
    if (a - L == k)
        return d[L];
    if (a - L < k)
        return find(a, R, k - (a - L));
    return find(L + 1, a - 1, k);
}

int main() {
    int k;
    cin >> n;
    cin >> k;
    for (int i = 0; i < n; ++i)
        cin >> d[i];
    cout << find(0, n - 1, k);
    return 0;
}

假设输入的 n,k 和 d[i] 都是不超过 10000 的正整数,且 k 不超过 n,并假设 rand() 函数产生的是均匀的随机数。

6)若输入的 d[i] 都为同一个数,此程序的平均时间复杂度是( )

共 2.5 分 

第28题

#include <iostream>
#include <queue>
using namespace std;

const int maxl = 2000000000;

class Map {
    struct item {
        string key; int value;
    } d[maxl];
    int cnt;
public:
    int find(string x) {
        for (int i = 0; i < cnt; i++)
            if (d[i].key == x)
                return d[i].value;
        return -1;
    }
    static int end() { return -1; }
    void insert(string k, int v) {
        d[cnt].key = k; d[cnt++].value = v;
    }
} s[2];

class Queue {
    string q[maxl];
    int head, tail;
public:
    void pop() { ++head; }
    string front() { return q[head + 1]; }
    bool empty() { return head == tail; }
    void push(string x) { q[++tail] = x; }
} q[2];

string st0, st1;
int m;

string LtoR(string s, int L, int R) {
    string t = s;
    char tmp = t[L];
    for (int i = L; i < R; ++i)
        t[i] = t[i + 1];
    t[R] = tmp;
    return t;
}

string RtoL(string s, int L, int R) {
    string t = s;
    char tmp = t[R];
    for (int i = R; i > L; --i)
        t[i] = t[i - 1];
    t[L] = tmp;
    return t;
}

bool check(string st, int p, int step) {
    if (s[p].find(st) != s[p].end())
        return false;
    ++step;
    if (s[p ^ 1].find(st) == s[p].end()) {
        s[p].insert(st, step);
        q[p].push(st);
        return false;
    }
    cout << s[p ^ 1].find(st) + step << endl;
    return true;
}

int main() {
    cin >> st0 >> st1;
    int len = st0.length();
    if (len != st1.length()) {
        cout << -1 << endl;
        return 0;
    }
    if (st0 == st1) {
        cout << 0 << endl;
        return 0;
    }
    cin >> m;
    s[0].insert(st0, 0); s[1].insert(st1, 0);
    q[0].push(st0); q[1].push(st1);
    for (int p = 0;
         !(q[0].empty() && q[1].empty());
         p ^= 1) {
        string st = q[p].front(); q[p].pop();
        int step = s[p].find(st);
        if ((p == 0 &&
              (check(LtoR(st, m, len - 1), p, step) ||
               check(RtoL(st, 0, m), p, step)))
                  ||
            (p == 1 &&
              (check(LtoR(st, 0, m), p, step) ||
               check(RtoL(st, m, len - 1), p, step))))
            return 0;
    }
    cout << -1 << endl;
    return 0;
}

1)判断:输出可能为 0。( )

共 1.5 分 

第29题

#include <iostream>
#include <queue>
using namespace std;
 
const int maxl = 2000000000;
 
class Map {
    struct item {
        string key; int value;
    } d[maxl];
    int cnt;
public:
    int find(string x) {
        for (int i = 0; i < cnt; i++)
            if (d[i].key == x)
                return d[i].value;
        return -1;
    }
    static int end() { return -1; }
    void insert(string k, int v) {
        d[cnt].key = k; d[cnt++].value = v;
    }
} s[2];
 
class Queue {
    string q[maxl];
    int head, tail;
public:
    void pop() { ++head; }
    string front() { return q[head + 1]; }
    bool empty() { return head == tail; }
    void push(string x) { q[++tail] = x; }
} q[2];
 
string st0, st1;
int m;
 
string LtoR(string s, int L, int R) {
    string t = s;
    char tmp = t[L];
    for (int i = L; i < R; ++i)
        t[i] = t[i + 1];
    t[R] = tmp;
    return t;
}
 
string RtoL(string s, int L, int R) {
    string t = s;
    char tmp = t[R];
    for (int i = R; i > L; --i)
        t[i] = t[i - 1];
    t[L] = tmp;
    return t;
}
 
bool check(string st, int p, int step) {
    if (s[p].find(st) != s[p].end())
        return false;
    ++step;
    if (s[p ^ 1].find(st) == s[p].end()) {
        s[p].insert(st, step);
        q[p].push(st);
        return false;
    }
    cout << s[p ^ 1].find(st) + step << endl;
    return true;
}
 
int main() {
    cin >> st0 >> st1;
    int len = st0.length();
    if (len != st1.length()) {
        cout << -1 << endl;
        return 0;
    }
    if (st0 == st1) {
        cout << 0 << endl;
        return 0;
    }
    cin >> m;
    s[0].insert(st0, 0); s[1].insert(st1, 0);
    q[0].push(st0); q[1].push(st1);
    for (int p = 0;
         !(q[0].empty() && q[1].empty());
         p ^= 1) {
        string st = q[p].front(); q[p].pop();
        int step = s[p].find(st);
        if ((p == 0 &&
              (check(LtoR(st, m, len - 1), p, step) ||
               check(RtoL(st, 0, m), p, step)))
                  ||
            (p == 1 &&
              (check(LtoR(st, 0, m), p, step) ||
               check(RtoL(st, m, len - 1), p, step))))
            return 0;
    }
    cout << -1 << endl;
    return 0;
}

2)判断:若输入的两个字符串长度均为 101 时,则 m=0 时的输出与 m=100 时的输出是一样的。( )

共 1.5 分 

第30题

#include <iostream>
#include <queue>
using namespace std;
 
const int maxl = 2000000000;
 
class Map {
    struct item {
        string key; int value;
    } d[maxl];
    int cnt;
public:
    int find(string x) {
        for (int i = 0; i < cnt; i++)
            if (d[i].key == x)
                return d[i].value;
        return -1;
    }
    static int end() { return -1; }
    void insert(string k, int v) {
        d[cnt].key = k; d[cnt++].value = v;
    }
} s[2];
 
class Queue {
    string q[maxl];
    int head, tail;
public:
    void pop() { ++head; }
    string front() { return q[head + 1]; }
    bool empty() { return head == tail; }
    void push(string x) { q[++tail] = x; }
} q[2];
 
string st0, st1;
int m;
 
string LtoR(string s, int L, int R) {
    string t = s;
    char tmp = t[L];
    for (int i = L; i < R; ++i)
        t[i] = t[i + 1];
    t[R] = tmp;
    return t;
}
 
string RtoL(string s, int L, int R) {
    string t = s;
    char tmp = t[R];
    for (int i = R; i > L; --i)
        t[i] = t[i - 1];
    t[L] = tmp;
    return t;
}
 
bool check(string st, int p, int step) {
    if (s[p].find(st) != s[p].end())
        return false;
    ++step;
    if (s[p ^ 1].find(st) == s[p].end()) {
        s[p].insert(st, step);
        q[p].push(st);
        return false;
    }
    cout << s[p ^ 1].find(st) + step << endl;
    return true;
}
 
int main() {
    cin >> st0 >> st1;
    int len = st0.length();
    if (len != st1.length()) {
        cout << -1 << endl;
        return 0;
    }
    if (st0 == st1) {
        cout << 0 << endl;
        return 0;
    }
    cin >> m;
    s[0].insert(st0, 0); s[1].insert(st1, 0);
    q[0].push(st0); q[1].push(st1);
    for (int p = 0;
         !(q[0].empty() && q[1].empty());
         p ^= 1) {
        string st = q[p].front(); q[p].pop();
        int step = s[p].find(st);
        if ((p == 0 &&
              (check(LtoR(st, m, len - 1), p, step) ||
               check(RtoL(st, 0, m), p, step)))
                  ||
            (p == 1 &&
              (check(LtoR(st, 0, m), p, step) ||
               check(RtoL(st, m, len - 1), p, step))))
            return 0;
    }
    cout << -1 << endl;
    return 0;
}

3)判断:若两个字符串的长度均为 n,则最坏情况下,此程序的时间复杂度为 Θ(n!)。( )

共 1.5 分 

第31题

#include <iostream>
#include <queue>
using namespace std;
 
const int maxl = 2000000000;
 
class Map {
    struct item {
        string key; int value;
    } d[maxl];
    int cnt;
public:
    int find(string x) {
        for (int i = 0; i < cnt; i++)
            if (d[i].key == x)
                return d[i].value;
        return -1;
    }
    static int end() { return -1; }
    void insert(string k, int v) {
        d[cnt].key = k; d[cnt++].value = v;
    }
} s[2];
 
class Queue {
    string q[maxl];
    int head, tail;
public:
    void pop() { ++head; }
    string front() { return q[head + 1]; }
    bool empty() { return head == tail; }
    void push(string x) { q[++tail] = x; }
} q[2];
 
string st0, st1;
int m;
 
string LtoR(string s, int L, int R) {
    string t = s;
    char tmp = t[L];
    for (int i = L; i < R; ++i)
        t[i] = t[i + 1];
    t[R] = tmp;
    return t;
}
 
string RtoL(string s, int L, int R) {
    string t = s;
    char tmp = t[R];
    for (int i = R; i > L; --i)
        t[i] = t[i - 1];
    t[L] = tmp;
    return t;
}
 
bool check(string st, int p, int step) {
    if (s[p].find(st) != s[p].end())
        return false;
    ++step;
    if (s[p ^ 1].find(st) == s[p].end()) {
        s[p].insert(st, step);
        q[p].push(st);
        return false;
    }
    cout << s[p ^ 1].find(st) + step << endl;
    return true;
}
 
int main() {
    cin >> st0 >> st1;
    int len = st0.length();
    if (len != st1.length()) {
        cout << -1 << endl;
        return 0;
    }
    if (st0 == st1) {
        cout << 0 << endl;
        return 0;
    }
    cin >> m;
    s[0].insert(st0, 0); s[1].insert(st1, 0);
    q[0].push(st0); q[1].push(st1);
    for (int p = 0;
         !(q[0].empty() && q[1].empty());
         p ^= 1) {
        string st = q[p].front(); q[p].pop();
        int step = s[p].find(st);
        if ((p == 0 &&
              (check(LtoR(st, m, len - 1), p, step) ||
               check(RtoL(st, 0, m), p, step)))
                  ||
            (p == 1 &&
              (check(LtoR(st, 0, m), p, step) ||
               check(RtoL(st, m, len - 1), p, step))))
            return 0;
    }
    cout << -1 << endl;
    return 0;
}

4)若输入的第一个字符串长度由 100 个不同的字符构成,第二个字符串是第一个字符串的倒序,输入的 m 为 0,则输出为( )。

共 2.5 分 

第32题

#include <iostream>
#include <queue>
using namespace std;
 
const int maxl = 2000000000;
 
class Map {
    struct item {
        string key; int value;
    } d[maxl];
    int cnt;
public:
    int find(string x) {
        for (int i = 0; i < cnt; i++)
            if (d[i].key == x)
                return d[i].value;
        return -1;
    }
    static int end() { return -1; }
    void insert(string k, int v) {
        d[cnt].key = k; d[cnt++].value = v;
    }
} s[2];
 
class Queue {
    string q[maxl];
    int head, tail;
public:
    void pop() { ++head; }
    string front() { return q[head + 1]; }
    bool empty() { return head == tail; }
    void push(string x) { q[++tail] = x; }
} q[2];
 
string st0, st1;
int m;
 
string LtoR(string s, int L, int R) {
    string t = s;
    char tmp = t[L];
    for (int i = L; i < R; ++i)
        t[i] = t[i + 1];
    t[R] = tmp;
    return t;
}
 
string RtoL(string s, int L, int R) {
    string t = s;
    char tmp = t[R];
    for (int i = R; i > L; --i)
        t[i] = t[i - 1];
    t[L] = tmp;
    return t;
}
 
bool check(string st, int p, int step) {
    if (s[p].find(st) != s[p].end())
        return false;
    ++step;
    if (s[p ^ 1].find(st) == s[p].end()) {
        s[p].insert(st, step);
        q[p].push(st);
        return false;
    }
    cout << s[p ^ 1].find(st) + step << endl;
    return true;
}
 
int main() {
    cin >> st0 >> st1;
    int len = st0.length();
    if (len != st1.length()) {
        cout << -1 << endl;
        return 0;
    }
    if (st0 == st1) {
        cout << 0 << endl;
        return 0;
    }
    cin >> m;
    s[0].insert(st0, 0); s[1].insert(st1, 0);
    q[0].push(st0); q[1].push(st1);
    for (int p = 0;
         !(q[0].empty() && q[1].empty());
         p ^= 1) {
        string st = q[p].front(); q[p].pop();
        int step = s[p].find(st);
        if ((p == 0 &&
              (check(LtoR(st, m, len - 1), p, step) ||
               check(RtoL(st, 0, m), p, step)))
                  ||
            (p == 1 &&
              (check(LtoR(st, 0, m), p, step) ||
               check(RtoL(st, m, len - 1), p, step))))
            return 0;
    }
    cout << -1 << endl;
    return 0;
}

5)已知当输入为

0123

3210

1

时输出为 4,当输入为

012345

543210

1

时输出为 14,当输入为

01234567

76543210

1

时输出为 28,则当输入为

0123456789ab

ba9876543210

1

输出为( )。

共 4 分 

第33题

#include <iostream>
#include <queue>
using namespace std;
 
const int maxl = 2000000000;
 
class Map {
    struct item {
        string key; int value;
    } d[maxl];
    int cnt;
public:
    int find(string x) {
        for (int i = 0; i < cnt; i++)
            if (d[i].key == x)
                return d[i].value;
        return -1;
    }
    static int end() { return -1; }
    void insert(string k, int v) {
        d[cnt].key = k; d[cnt++].value = v;
    }
} s[2];
 
class Queue {
    string q[maxl];
    int head, tail;
public:
    void pop() { ++head; }
    string front() { return q[head + 1]; }
    bool empty() { return head == tail; }
    void push(string x) { q[++tail] = x; }
} q[2];
 
string st0, st1;
int m;
 
string LtoR(string s, int L, int R) {
    string t = s;
    char tmp = t[L];
    for (int i = L; i < R; ++i)
        t[i] = t[i + 1];
    t[R] = tmp;
    return t;
}
 
string RtoL(string s, int L, int R) {
    string t = s;
    char tmp = t[R];
    for (int i = R; i > L; --i)
        t[i] = t[i - 1];
    t[L] = tmp;
    return t;
}
 
bool check(string st, int p, int step) {
    if (s[p].find(st) != s[p].end())
        return false;
    ++step;
    if (s[p ^ 1].find(st) == s[p].end()) {
        s[p].insert(st, step);
        q[p].push(st);
        return false;
    }
    cout << s[p ^ 1].find(st) + step << endl;
    return true;
}
 
int main() {
    cin >> st0 >> st1;
    int len = st0.length();
    if (len != st1.length()) {
        cout << -1 << endl;
        return 0;
    }
    if (st0 == st1) {
        cout << 0 << endl;
        return 0;
    }
    cin >> m;
    s[0].insert(st0, 0); s[1].insert(st1, 0);
    q[0].push(st0); q[1].push(st1);
    for (int p = 0;
         !(q[0].empty() && q[1].empty());
         p ^= 1) {
        string st = q[p].front(); q[p].pop();
        int step = s[p].find(st);
        if ((p == 0 &&
              (check(LtoR(st, m, len - 1), p, step) ||
               check(RtoL(st, 0, m), p, step)))
                  ||
            (p == 1 &&
              (check(LtoR(st, 0, m), p, step) ||
               check(RtoL(st, m, len - 1), p, step))))
            return 0;
    }
    cout << -1 << endl;
    return 0;
}

6)若两个字符串的长度均为 n,且 0<m<n−1,且两个字符串的构成相同(即任何一个字符在两个字符串中出现的次数均相同),则下列说法正确的是( )。提示:考虑输入与输出有多少对字符前后顺序不一样。

共 4 分 

第34题

(分数背包)小 S 有 n 块蛋糕,编号从 1 到 n。第 i 块蛋糕的价值是 wi,体积是 vi。他有一个大小为 B 的盒子来装这些蛋糕,也就是说装入盒子的蛋糕的体积总和不能超过 B。

他打算选择一些蛋糕装入盒子,他希望盒子里装的蛋糕的价值之和尽量大。

为了使盒子里的蛋糕价值之和更大,他可以任意切割蛋糕。具体来说,他可以选择一个 α(0<α<1),并将一块价值是 w,体积为 v 的蛋糕切割成两块,其中一块的价值是 αw,体积是 αv,另一块的价值是 (1−α)w,体积是 (1−α)v。他可以重复无限次切割操作。

现要求编程输出最大可能的价值,以分数的形式输出。

比如 n=3,B=8,三块蛋糕的价值分别是 4、4、2,体积分别是 5、3、2。

那么最优的方法就是将体积为 5 的蛋糕切成两份,一份体积是 3,价值是 2.4,另一份体积是 2,价值是 1.61,然后把体积是 3 的那部分和后两块蛋糕打包进盒子。最优的价值之和是 8.4,故程序输出 42/5。

输入的数据范围为:1≤n≤1000,1≤B≤105,1≤wi,vi≤100。

提示:将所有的蛋糕按照性价比 wi/vi 从大到小排序后进行贪心选择。

试补全程序。

#include <cstdio>
using namespace std;

const int maxn = 1005;

int n, B, w[maxn], v[maxn];

int gcd(int u, int v) {
    if (v == 0)
        return u;
    return gcd(v, u % v);
}

void print(int w, int v) {
    int d = gcd(w, v);
    w = w / d;
    v = v / d;
    if (v == 1)
        printf("%d\n", w);
    else
        printf("%d/%d\n", w, v);
}

void swap(int &x, int &y) {
    int t = x; x = y; y = t;
}

int main() {
    scanf("%d %d", &n, &B);
    for (int i = 1; i <= n; i ++) {
        scanf("%d%d", &w[i], &v[i]);
    }
    for (int i = 1; i < n; i ++)
        for (int j = 1; j < n; j ++)
            if ( ① ) {
                swap(w[j], w[j + 1]);
                swap(v[j], v[j + 1]);
            }
    int curV, curW;
    if ( ② ) {
        ③
    } else {
        print(B * w[1], v[1]);
        return 0;
    }

    for (int i = 2; i <= n; i ++)
        if (curV + v[i] <= B) {
            curV += v[i];
            curW += w[i];
        } else {
            print( ④ );
            return 0;
        }
    print( ⑤ );
    return 0;
}

① 处应填( )

共 3 分 

第35题

(分数背包)小 S 有 n 块蛋糕,编号从 1 到 n。第 i 块蛋糕的价值是 wi,体积是 vi。他有一个大小为 B 的盒子来装这些蛋糕,也就是说装入盒子的蛋糕的体积总和不能超过 B。

他打算选择一些蛋糕装入盒子,他希望盒子里装的蛋糕的价值之和尽量大。

为了使盒子里的蛋糕价值之和更大,他可以任意切割蛋糕。具体来说,他可以选择一个 α(0<α<1),并将一块价值是 w,体积为 v 的蛋糕切割成两块,其中一块的价值是 αw,体积是 αv,另一块的价值是 (1−α)w,体积是 (1−α)v。他可以重复无限次切割操作。

现要求编程输出最大可能的价值,以分数的形式输出。

比如 n=3,B=8,三块蛋糕的价值分别是 4、4、2,体积分别是 5、3、2。

那么最优的方法就是将体积为 5 的蛋糕切成两份,一份体积是 3,价值是 2.4,另一份体积是 2,价值是 1.61,然后把体积是 3 的那部分和后两块蛋糕打包进盒子。最优的价值之和是 8.4,故程序输出 42/5。

输入的数据范围为:1≤n≤1000,1≤B≤105,1≤wi,vi≤100。

提示:将所有的蛋糕按照性价比 wi/vi 从大到小排序后进行贪心选择。

试补全程序。

#include <cstdio>
using namespace std;

const int maxn = 1005;

int n, B, w[maxn], v[maxn];

int gcd(int u, int v) {
    if (v == 0)
        return u;
    return gcd(v, u % v);
}

void print(int w, int v) {
    int d = gcd(w, v);
    w = w / d;
    v = v / d;
    if (v == 1)
        printf("%d\n", w);
    else
        printf("%d/%d\n", w, v);
}

void swap(int &x, int &y) {
    int t = x; x = y; y = t;
}

int main() {
    scanf("%d %d", &n, &B);
    for (int i = 1; i <= n; i ++) {
        scanf("%d%d", &w[i], &v[i]);
    }
    for (int i = 1; i < n; i ++)
        for (int j = 1; j < n; j ++)
            if ( ① ) {
                swap(w[j], w[j + 1]);
                swap(v[j], v[j + 1]);
            }
    int curV, curW;
    if ( ② ) {
        ③
    } else {
        print(B * w[1], v[1]);
        return 0;
    }

    for (int i = 2; i <= n; i ++)
        if (curV + v[i] <= B) {
            curV += v[i];
            curW += w[i];
        } else {
            print( ④ );
            return 0;
        }
    print( ⑤ );
    return 0;
}

② 处应填( )

共 3 分 

第36题

(分数背包)小 S 有 n 块蛋糕,编号从 1 到 n。第 i 块蛋糕的价值是 wi,体积是 vi。他有一个大小为 B 的盒子来装这些蛋糕,也就是说装入盒子的蛋糕的体积总和不能超过 B。

他打算选择一些蛋糕装入盒子,他希望盒子里装的蛋糕的价值之和尽量大。

为了使盒子里的蛋糕价值之和更大,他可以任意切割蛋糕。具体来说,他可以选择一个 α(0<α<1),并将一块价值是 w,体积为 v 的蛋糕切割成两块,其中一块的价值是 αw,体积是 αv,另一块的价值是 (1−α)w,体积是 (1−α)v。他可以重复无限次切割操作。

现要求编程输出最大可能的价值,以分数的形式输出。

比如 n=3,B=8,三块蛋糕的价值分别是 4、4、2,体积分别是 5、3、2。

那么最优的方法就是将体积为 5 的蛋糕切成两份,一份体积是 3,价值是 2.4,另一份体积是 2,价值是 1.61,然后把体积是 3 的那部分和后两块蛋糕打包进盒子。最优的价值之和是 8.4,故程序输出 42/5。

输入的数据范围为:1≤n≤1000,1≤B≤105,1≤wi,vi≤100。

提示:将所有的蛋糕按照性价比 wi/vi 从大到小排序后进行贪心选择。

试补全程序。

#include <cstdio>
using namespace std;
const int maxn = 1005;
int n, B, w[maxn], v[maxn];
int gcd(int u, int v) {
    if (v == 0)
        return u;
    return gcd(v, u % v);
}
void print(int w, int v) {
    int d = gcd(w, v);
    w = w / d;
    v = v / d;
    if (v == 1)
        printf("%d\n", w);
    else
        printf("%d/%d\n", w, v);
}
void swap(int &x, int &y) {
    int t = x; x = y; y = t;
}
int main() {
    scanf("%d %d", &n, &B);
    for (int i = 1; i <= n; i ++) {
        scanf("%d%d", &w[i], &v[i]);
    }
    for (int i = 1; i < n; i ++)
        for (int j = 1; j < n; j ++)
            if ( ① ) {
                swap(w[j], w[j + 1]);
                swap(v[j], v[j + 1]);
            }
    int curV, curW;
    if ( ② ) {
        ③
    } else {
        print(B * w[1], v[1]);
        return 0;
    }
    for (int i = 2; i <= n; i ++)
        if (curV + v[i] <= B) {
            curV += v[i];
            curW += w[i];
        } else {
            print( ④ );
            return 0;
        }
    print( ⑤ );
    return 0;
}

③ 处应填( )

共 3 分 

第37题

(分数背包)小 S 有 n 块蛋糕,编号从 1 到 n。第 i 块蛋糕的价值是 wi,体积是 vi。他有一个大小为 B 的盒子来装这些蛋糕,也就是说装入盒子的蛋糕的体积总和不能超过 B。

他打算选择一些蛋糕装入盒子,他希望盒子里装的蛋糕的价值之和尽量大。

为了使盒子里的蛋糕价值之和更大,他可以任意切割蛋糕。具体来说,他可以选择一个 α(0<α<1),并将一块价值是 w,体积为 v 的蛋糕切割成两块,其中一块的价值是 αw,体积是 αv,另一块的价值是 (1−α)w,体积是 (1−α)v。他可以重复无限次切割操作。

现要求编程输出最大可能的价值,以分数的形式输出。

比如 n=3,B=8,三块蛋糕的价值分别是 4、4、2,体积分别是 5、3、2。

那么最优的方法就是将体积为 5 的蛋糕切成两份,一份体积是 3,价值是 2.4,另一份体积是 2,价值是 1.61,然后把体积是 3 的那部分和后两块蛋糕打包进盒子。最优的价值之和是 8.4,故程序输出 42/5。

输入的数据范围为:1≤n≤1000,1≤B≤105,1≤wi,vi≤100。

提示:将所有的蛋糕按照性价比 wi/vi 从大到小排序后进行贪心选择。

试补全程序。

#include <cstdio>
using namespace std;
const int maxn = 1005;
int n, B, w[maxn], v[maxn];
int gcd(int u, int v) {
    if (v == 0)
        return u;
    return gcd(v, u % v);
}
void print(int w, int v) {
    int d = gcd(w, v);
    w = w / d;
    v = v / d;
    if (v == 1)
        printf("%d\n", w);
    else
        printf("%d/%d\n", w, v);
}
void swap(int &x, int &y) {
    int t = x; x = y; y = t;
}
int main() {
    scanf("%d %d", &n, &B);
    for (int i = 1; i <= n; i ++) {
        scanf("%d%d", &w[i], &v[i]);
    }
    for (int i = 1; i < n; i ++)
        for (int j = 1; j < n; j ++)
            if ( ① ) {
                swap(w[j], w[j + 1]);
                swap(v[j], v[j + 1]);
            }
    int curV, curW;
    if ( ② ) {
        ③
    } else {
        print(B * w[1], v[1]);
        return 0;
    }
    for (int i = 2; i <= n; i ++)
        if (curV + v[i] <= B) {
            curV += v[i];
            curW += w[i];
        } else {
            print( ④ );
            return 0;
        }
    print( ⑤ );
    return 0;
}

④ 处应填( )

共 3 分 

第38题

(分数背包)小 S 有 n 块蛋糕,编号从 1 到 n。第 i 块蛋糕的价值是 wi,体积是 vi。他有一个大小为 B 的盒子来装这些蛋糕,也就是说装入盒子的蛋糕的体积总和不能超过 B。

他打算选择一些蛋糕装入盒子,他希望盒子里装的蛋糕的价值之和尽量大。

为了使盒子里的蛋糕价值之和更大,他可以任意切割蛋糕。具体来说,他可以选择一个 α(0<α<1),并将一块价值是 w,体积为 v 的蛋糕切割成两块,其中一块的价值是 αw,体积是 αv,另一块的价值是 (1−α)w,体积是 (1−α)v。他可以重复无限次切割操作。

现要求编程输出最大可能的价值,以分数的形式输出。

比如 n=3,B=8,三块蛋糕的价值分别是 4、4、2,体积分别是 5、3、2。

那么最优的方法就是将体积为 5 的蛋糕切成两份,一份体积是 3,价值是 2.4,另一份体积是 2,价值是 1.61,然后把体积是 3 的那部分和后两块蛋糕打包进盒子。最优的价值之和是 8.4,故程序输出 42/5。

输入的数据范围为:1≤n≤1000,1≤B≤105,1≤wi,vi≤100。

提示:将所有的蛋糕按照性价比 wi/vi 从大到小排序后进行贪心选择。

试补全程序。

#include <cstdio>
using namespace std;

const int maxn = 1005;

int n, B, w[maxn], v[maxn];

int gcd(int u, int v) {
    if (v == 0)
        return u;
    return gcd(v, u % v);
}

void print(int w, int v) {
    int d = gcd(w, v);
    w = w / d;
    v = v / d;
    if (v == 1)
        printf("%d\n", w);
    else
        printf("%d/%d\n", w, v);
}

void swap(int &x, int &y) {
    int t = x; x = y; y = t;
}

int main() {
    scanf("%d %d", &n, &B);
    for (int i = 1; i <= n; i ++) {
        scanf("%d%d", &w[i], &v[i]);
    }
    for (int i = 1; i < n; i ++)
        for (int j = 1; j < n; j ++)
            if ( ① ) {
                swap(w[j], w[j + 1]);
                swap(v[j], v[j + 1]);
            }
    int curV, curW;
    if ( ② ) {
        ③
    } else {
        print(B * w[1], v[1]);
        return 0;
    }

    for (int i = 2; i <= n; i ++)
        if (curV + v[i] <= B) {
            curV += v[i];
            curW += w[i];
        } else {
            print( ④ );
            return 0;
        }
    print( ⑤ );
    return 0;
}

⑤处应填( )

共 3 分 

第39题

(最优子序列)取 m = 16,给出长度为 n 的整数序列 a1,a2,…,an(0≤ai≤2m)。对于一个二进制数 x,定义其分值 w(x) 为x+popcnt(x),其中 popcnt(x) 表示 x 二进制表示中 1 的个数。对于一个子序列 b1,b2,…,bk,定义其子序列分值 S 为 w(b1⨁b2)+w(b2⨁b3)+w(b3⨁b4)+…w(bk−1⨁bk)。其中⨁ 表示按位异或。对于空子序列,规定其子序列分值为 0。求一个子序列似的其子序列的分值最大,输出这个最大值。

输入第一行包含一个整数 n(1≤n≤40000)。接下来一行包含 n 个整数a1,a2,…,an。

提示:考虑优化朴素的动态规划算法,将前 m/2 位和后m /2位分开计算。

Max[x][y] 表示当前的子序列下一个位置的高 8 位是 x、最后一个位置的低 8 位是 y 时的最大价值。

试补全程序。

#include <iostream>

using namespace std;

typedef long long LL;

const int MAXN = 40000, M = 16, B = M >> 1, MS = (1 << B) - 1;
const LL INF = 1000000000000000LL;
LL Max[MS + 4][MS + 4];

int w(int x)
{
    int s = x;
    while (x)
    {
        ①;
        s++;
    }
    return s;
}

void to_max(LL &x, LL y)
{
    if (x < y)
        x = y;
}

int main()
{
    int n;
    LL ans = 0;
    cin >> n;
    for (int x = 0; x <= MS; x++)
        for (int y = 0; y <= MS; y++)
            Max[x][y] = -INF;
    for (int i = 1; i <= n; i++)
    {
        LL a;
        cin >> a;
        int x = ②, y = a & MS;
        LL v = ③;
        for (int z = 0; z <= MS; z++)
            to_max(v, ④);
        for (int z = 0; z <= MS; z++)
            ⑤;
        to_max(ans, v);
    }
    cout << ans << endl;
    return 0;
}

① 处应填( )

共 3 分 

第40题

(最优子序列)取 m = 16,给出长度为 n 的整数序列 a1,a2,…,an(0≤ai≤2m)。对于一个二进制数 x,定义其分值 w(x) 为x+popcnt(x),其中 popcnt(x) 表示 x 二进制表示中 1 的个数。对于一个子序列 b1,b2,…,bk,定义其子序列分值 S 为 w(b1⨁b2)+w(b2⨁b3)+w(b3⨁b4)+…w(bk−1⨁bk)。其中⨁ 表示按位异或。对于空子序列,规定其子序列分值为 0。求一个子序列似的其子序列的分值最大,输出这个最大值。

输入第一行包含一个整数 n(1≤n≤40000)。接下来一行包含 n 个整数a1,a2,…,an。

提示:考虑优化朴素的动态规划算法,将前 m/2 位和后m /2位分开计算。

Max[x][y] 表示当前的子序列下一个位置的高 8 位是 x、最后一个位置的低 8 位是 y 时的最大价值。

试补全程序。

#include <iostream>

using namespace std;

typedef long long LL;

const int MAXN = 40000, M = 16, B = M >> 1, MS = (1 << B) - 1;
const LL INF = 1000000000000000LL;
LL Max[MS + 4][MS + 4];

int w(int x)
{
    int s = x;
    while (x)
    {
        ①;
        s++;
    }
    return s;
}

void to_max(LL &x, LL y)
{
    if (x < y)
        x = y;
}

int main()
{
    int n;
    LL ans = 0;
    cin >> n;
    for (int x = 0; x <= MS; x++)
        for (int y = 0; y <= MS; y++)
            Max[x][y] = -INF;
    for (int i = 1; i <= n; i++)
    {
        LL a;
        cin >> a;
        int x = ②, y = a & MS;
        LL v = ③;
        for (int z = 0; z <= MS; z++)
            to_max(v, ④);
        for (int z = 0; z <= MS; z++)
            ⑤;
        to_max(ans, v);
    }
    cout << ans << endl;
    return 0;
}

② 处应填( )

共 3 分 

第41题

(最优子序列)取 m = 16,给出长度为 n 的整数序列 a1,a2,…,an(0≤ai≤2m)。对于一个二进制数 x,定义其分值 w(x) 为x+popcnt(x),其中 popcnt(x) 表示 x 二进制表示中 1 的个数。对于一个子序列 b1,b2,…,bk,定义其子序列分值 S 为 w(b1⨁b2)+w(b2⨁b3)+w(b3⨁b4)+…w(bk−1⨁bk)。其中⨁ 表示按位异或。对于空子序列,规定其子序列分值为 0。求一个子序列似的其子序列的分值最大,输出这个最大值。

输入第一行包含一个整数 n(1≤n≤40000)。接下来一行包含 n 个整数a1,a2,…,an。

提示:考虑优化朴素的动态规划算法,将前 m/2 位和后m /2位分开计算。

Max[x][y] 表示当前的子序列下一个位置的高 8 位是 x、最后一个位置的低 8 位是 y 时的最大价值。

试补全程序。

#include <iostream>
using namespace std;
typedef long long LL;
const int MAXN = 40000, M = 16, B = M >> 1, MS = (1 << B) - 1;
const LL INF = 1000000000000000LL;
LL Max[MS + 4][MS + 4];
int w(int x)
{
    int s = x;
    while (x)
    {
        ①;
        s++;
    }
    return s;
}
void to_max(LL &x, LL y)
{
    if (x < y)
        x = y;
}
int main()
{
    int n;
    LL ans = 0;
    cin >> n;
    for (int x = 0; x <= MS; x++)
        for (int y = 0; y <= MS; y++)
            Max[x][y] = -INF;
    for (int i = 1; i <= n; i++)
    {
        LL a;
        cin >> a;
        int x = ②, y = a & MS;
        LL v = ③;
        for (int z = 0; z <= MS; z++)
            to_max(v, ④);
        for (int z = 0; z <= MS; z++)
            ⑤;
        to_max(ans, v);
    }
    cout << ans << endl;
    return 0;
}

③ 处应填( )

共 3 分 

第42题

(最优子序列)取 m = 16,给出长度为 n 的整数序列 a1,a2,…,an(0≤ai≤2m)。对于一个二进制数 x,定义其分值 w(x) 为x+popcnt(x),其中 popcnt(x) 表示 x 二进制表示中 1 的个数。对于一个子序列 b1,b2,…,bk,定义其子序列分值 S 为 w(b1⨁b2)+w(b2⨁b3)+w(b3⨁b4)+…w(bk−1⨁bk)。其中⨁ 表示按位异或。对于空子序列,规定其子序列分值为 0。求一个子序列似的其子序列的分值最大,输出这个最大值。

输入第一行包含一个整数 n(1≤n≤40000)。接下来一行包含 n 个整数a1,a2,…,an。

提示:考虑优化朴素的动态规划算法,将前 m/2 位和后m /2位分开计算。

Max[x][y] 表示当前的子序列下一个位置的高 8 位是 x、最后一个位置的低 8 位是 y 时的最大价值。

试补全程序。

#include <iostream>
using namespace std;
typedef long long LL;
const int MAXN = 40000, M = 16, B = M >> 1, MS = (1 << B) - 1;
const LL INF = 1000000000000000LL;
LL Max[MS + 4][MS + 4];
int w(int x)
{
    int s = x;
    while (x)
    {
        ①;
        s++;
    }
    return s;
}
void to_max(LL &x, LL y)
{
    if (x < y)
        x = y;
}
int main()
{
    int n;
    LL ans = 0;
    cin >> n;
    for (int x = 0; x <= MS; x++)
        for (int y = 0; y <= MS; y++)
            Max[x][y] = -INF;
    for (int i = 1; i <= n; i++)
    {
        LL a;
        cin >> a;
        int x = ②, y = a & MS;
        LL v = ③;
        for (int z = 0; z <= MS; z++)
            to_max(v, ④);
        for (int z = 0; z <= MS; z++)
            ⑤;
        to_max(ans, v);
    }
    cout << ans << endl;
    return 0;
}

④ 处应填( )

共 3 分 

第43题

(最优子序列)取 m = 16,给出长度为 n 的整数序列 a1,a2,…,an(0≤ai≤2m)。对于一个二进制数 x,定义其分值 w(x) 为x+popcnt(x),其中 popcnt(x) 表示 x 二进制表示中 1 的个数。对于一个子序列 b1,b2,…,bk,定义其子序列分值 S 为 w(b1⨁b2)+w(b2⨁b3)+w(b3⨁b4)+…w(bk−1⨁bk)。其中⨁ 表示按位异或。对于空子序列,规定其子序列分值为 0。求一个子序列似的其子序列的分值最大,输出这个最大值。

输入第一行包含一个整数 n(1≤n≤40000)。接下来一行包含 n 个整数a1,a2,…,an。

提示:考虑优化朴素的动态规划算法,将前 m/2 位和后m /2位分开计算。

Max[x][y] 表示当前的子序列下一个位置的高 8 位是 x、最后一个位置的低 8 位是 y 时的最大价值。

试补全程序。

#include <iostream>

using namespace std;

typedef long long LL;

const int MAXN = 40000, M = 16, B = M >> 1, MS = (1 << B) - 1;
const LL INF = 1000000000000000LL;
LL Max[MS + 4][MS + 4];

int w(int x)
{
    int s = x;
    while (x)
    {
        ①;
        s++;
    }
    return s;
}

void to_max(LL &x, LL y)
{
    if (x < y)
        x = y;
}

int main()
{
    int n;
    LL ans = 0;
    cin >> n;
    for (int x = 0; x <= MS; x++)
        for (int y = 0; y <= MS; y++)
            Max[x][y] = -INF;
    for (int i = 1; i <= n; i++)
    {
        LL a;
        cin >> a;
        int x = ②, y = a & MS;
        LL v = ③;
        for (int z = 0; z <= MS; z++)
            to_max(v, ④);
        for (int z = 0; z <= MS; z++)
            ⑤;
        to_max(ans, v);
    }
    cout << ans << endl;
    return 0;
}

⑤处应填( )

共 3 分